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Abstract

We have found an invalid assumption in the Robert–Bonamy formalism that has been widely used for calculating

Lorentzian spectral line half-widths and shifts for decades. The problem results in their derivation where they assumed the

cumulant expansion can be used to evaluate the Liouville matrix element hhj2i2 Ŝ
��� ���j2i2ii. At first sight, their assumption

appears to be correct because this matrix element is diagonal in the Liouville space and as a result, it looks like that a basic

requirement in applying the cumulant expansion is satisfied. However, by decomposing it into two Hilbert matrix elements

associated with SI and SF ðŜ ¼ SIS
n

FÞ, respectively, we have found that neither of these is diagonal in Hilbert space.

Therefore, their assumption is not valid and their expressions for the half-widths and shifts are incorrect. We have found

by choosing an average over the internal degrees of the bath molecule as the average in the cumulant expansion, one is able

to apply this expansion properly and obtain the correct expressions. Numerical calculations show new half-width and shift

values differ from previous ones, and the stronger the interaction between two molecules is, the larger these differences are.

r 2006 Elsevier Ltd. All rights reserved.
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1. The Robert-Bonamy formalism for Lorentzian widths and shifts

The Robert–Bonamy (RB) formalism [1] was developed more than two decades ago and has been widely
used in calculating the Lorentzian half-widths and shifts for spectral lines for many molecular systems of
importance. This theory has been previously developed for linear molecules, extended to other molecules [2–4]
and successfully applied to infrared and Raman spectra [5–7]. As claimed by one of these authors [7], the main
features of this theory are the non-perturbative treatment of the S-scattering matrix through the use of the
e front matter r 2006 Elsevier Ltd. All rights reserved.
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linked cluster theorem, and a convenient description of classical trajectories for large impact parameters as
well as for the closest approach. Some progress has been made recently to improve the RB original results
[8,9], but most of these efforts have been related to the extension to more complicated interaction potentials,
vibrational dependences, more accurate trajectories, etc. None has focused on making further improvements
to the basic theory itself. As a result, the calculations of half-widths and shifts using the RB results have
become routine, and the results widely applied to the self- and foreign-broadened widths and shifts for
atmospheric molecular systems, such as those compiled in the HITRAN database [10]. In cases where the
calculated values did not match the experimental data well, the strategy used for improvements was to use
more complicated potential models and higher potential expansion cut-offs, to take into account more
sophisticated vibrational dependences, and to consider the translational motion moving along ‘‘exact’’
trajectories rather than to scrutinize the RB theory in detail. Recently, we have checked these authors’ early
papers and found there was an invalid assumption made in their derivation of the starting formulas. More
specifically, the problem occurred when Robert and Bonamy used Bloch’s Linked–Cluster theorem [11]

UðtÞ ¼ ULðtÞh0 UðtÞ
�� ��0i

¼ ULðtÞ e
h0 UðtÞj j0iðCÞ, ð1Þ

where 0j i is the non-degenerate ground state of the unperturbed Hamiltonian and U(t) is the time evolution
operator, to evaluate the matrix elements hhj20i20 Ŝ

��� ���j2i2ii. Here j and i are simple notations to represent states
of the absorber molecule and 2 and 20 for the states of the bath molecule. As can be seen from Eq. (6) of their
paper1
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they have assumed that analogous to h0 UðtÞ
�� ��0i ¼ exp h0 UðtÞ

�� ��0iðCÞ� �
, the matrix element hhj2i2 Ŝ

��� ���j2i2ii is

equal to exp �iS
ðCÞ
1 � S

ðCÞ
2

n o
, where i in the exponentials denotes

ffiffiffiffiffiffiffi
�1
p

. At first sight, their assumption appears

to be correct because this matrix element is diagonal in the Liouville space and as a result, it appears that a
basic requirement in applying the cumulant expansion [12,13] (i.e., equivalent to the Bloch’s connected
diagram method that is the core part of the Linked-Cluster theorem) is satisfied. Some authors [14] have made
comments on their later treatment for the off-diagonal terms, which they also put this into an exponential
form, and combined the latter with the exponential associated with the connected terms in an ad hoc way; viz.

hhj20i20 Ŝ
��� ���j2i2ii ¼ d202 � S

ðLÞ
2

h i
e�iS

ðCÞ
1
�S
ðCÞ
2 � e�iS1�S2 , (3)

where S1 ¼ S
ðCÞ
1 and S2 ¼ S

ðCÞ
2 þ S

ðLÞ
2 . Robert et al. [5] claimed in their paper that this latter procedure is based

on an approximation, and they have shown that this approximation is valid for cases of interest. Heretofore,

no one has questioned their treatment for the diagonal matrix element hhj2i2 Ŝ
��� ���j2i2ii. In this paper, we present

our analysis of their assumption that hhj2i2 Ŝ
��� ���j2i2ii ¼ exp �iS

ðCÞ
1 � S

ðCÞ
2

n o
.

1Note: there is a typing error in the original expression.
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It is worth mentioning first that the Liouville formalism was introduced in order to simplify notations given
in Hilbert space. Some rules have been established for carrying out manipulations in the Liouville space, but
one has to keep in mind that one cannot simply assume that rules applicable in Hilbert space are also
applicable in the Liouville space or vice versa. A straightforward way to check whether an extension is correct
or not is to rewrite everything back in Hilbert space and to check whether the same rule works or not. In our
present study, the rules of interest are the cumulant expansion and the Bloch’s Linked-Cluster theorem. It is
well known these were developed in Hilbert space. Therefore, one cannot simply extend these methods into the
Liouville space without verification. In fact, what Robert and Bonamy did in their derivation of the RB
formalism is to assume that a similar cumulant expansion is also applicable for hhj2i2 Sj jj2i2ii in the Liouville
space just like that in Hilbert space. In order to check whether their assumption is correct or not, we rewrite
hhj2i2 Sj jj2i2ii in terms of Hilbert operators and states and to see whether the basic requirement in applying the
cumulant expansion is satisfied or not.

It is well known that the RB formalism is applicable only for well-separated lines because it is based on the
assumption that with respect to the line space of the absorber molecule, labeled by pairs of j and i, the
Liouville resolvent operator is diagonal. In Fano’s notation [15], this resolvent operator is denoted by
hmð0Þibath ¼ i=2ph1� Ŝibath where Ŝ ¼ SIS

n

F and /?Sbath denotes averages over the internal degrees of the
bath molecule as well as averages over the translational degrees of the interacting pair. For simplicity, we will
suppress the vibrational quantum numbers in the following. In addition, because hmð0Þibath is diagonal with
respect to pairs of j and i, we will not present its explicit dependence on these absorber molecule quantum
numbers. According to Eq. (5) of their paper [1], a comprehensive expression for 22j ii, the bath component of
the Liouville vector j2i2

�� ii, is given by

22j ii ¼
ð�1Þj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j2 þ 1

p X
m2

j2m2

�� �
j2m2

�� �
y . (4)

Then, one can express the Liouville matrix element hhj2i2 Ŝ
��� ���j2i2ii in terms of products of two matrix elements

of SI and Sn

F, respectively, that act on two Hilbert spaces constructed by the initial and final states of the
interacting pair as

hhj2i2 Ŝ
��� ���j2i2ii ¼

1

2j2 þ 1

X
m2;m

0
2

i; j2m02 SIj ji; j2m2

� �
j; j2m2 Sn

F

�� ��j; j2m02
� �

, (5)

where only the explicit expression for the bath internal degrees is given. As shown by the above expression,
none of these matrix elements of SI and Sn

F are diagonal. As a result, one cannot apply the cumulant expansion
independently to SI and Sn

F and, thus, one cannot apply it to the Liouville operator Ŝ at all. It is just this
subtlety that introduced an error in their derivation.

There is an alternative way [16] developed to derive the RB formulas. In this work, the average /?S used
in the cumulant expansion [12,13] is basically defined as a summation of Ŝ over 20 and has been expressed as

hŜi ¼
X
20

hhj20i20 Sj jj2i2ii. (6)

This also looks like it satisfies the condition for applying the cumulant expansion because the
normalization condition of /1S ¼ 1 is satisfied. In addition, with this definition one is able to consider
contributions from the off-diagonal matrix elements hhj20i20 Sj jj2i2ii as well as the diagonal ones
hhj2i2 Sj jj2i2ii, and derive formulas for the half-widths and shifts directly without relying on any ad hoc
assumptions. The latter treatment gives results that are exactly the same as the RB ones obtained with the ad
hoc treatment for the off-diagonal terms mentioned above. However, by carefully analyzing this derivation,
we have found that there is an error in the expression for hŜi. There is no problem to choose such average
/?S because the averages could be numbers as well as operators [13]. The problem results from
a misunderstanding between an operator and its matrix elements. The essential point here is that after
taking the average that is defined as a summation over 20, the remaining hŜi is still a Liouville vector (i.e., a
Hilbert operator) spanning the space constructed by the initial states 2 and the final states 2, where these
two running indices 2 and 2 are identical because the bath molecule does not participate in transitions.
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Therefore, the correct expression for hŜi should be

hŜi ¼
X
2

X
20

hhj20i20 Sj jj2i2ii

( )
hh22j, (7)

where hh22j stand for axes in the Liouville space and
P

20 hhj2
0i20 Sj jj2i2ii are the corresponding coordinates,

not that given in the right-hand side of Eq. (6). The latter is nothing but one of this vector’s coordinates along
a specified axis labeled by 2 and 2. As a result, after applying the cumulant expansion and deriving a similar
expression for exp{�iS1�S2}, these S1 and S2 are Hilbert operators, not numbers given by their corresponding
matrix elements. It is well known that for an operator A, /a|exp{A}|bS 6¼exp{/a|A|bS} including a ¼ b
unless A is a diagonal with respect to a and b. Therefore, this derivation is not correct because it is implicitly
based on a similar replacement of /a|exp{A}|bS by exp{/a|A|bS}. Again, another subtlety led to an error in
the derivation. At this stage, we would like to note that although this alternative derivation contains an error,
it is helpful for exhibiting more clearly what kind of extra unnecessary approximations are embedded in the
current RB formalism.

In summary, we have shown that there are subtle errors in the attempts to derive the RB formulas, and we
can conclude that expressions for the half-widths and shifts using the RB formulation are not ‘‘exact’’; that is,
they contain some other tacit approximations. However, by making a series expansion, it is easy to show that
the current RB formulas match hmð0Þibath given by the Anderson-Tsao-Curnutte [17,18] theory up to the
second order of the perturbation expansion of Ŝ,

hmð0Þibath ¼
1

2p
�_�1

Z þ1
�1

dt
X
2;20

j20i20 V̂ ðtÞ
�� ��j2i2

� �
rb

8<
:

*
þ i_�2

Z þ1
�1

dt

Z t

�1

dt0

�
X
2;20

j20i20 V̂ ðtÞV̂ ðt0Þ
�� ��j2i2

� �
rb þ � � �

9=
;
+

v;b

, ð8Þ

where the average over the internal degrees of the bath molecule is explicitly given and the average over the
translation motion is indicated by /?Sv,b. This implies these formulas should work well for cases where the
interaction potentials are weak. For other cases, the calculated values become less reliable due to the extra
approximations involved. These extra approximations introduced could interweave with those caused by the
currently adopted level of approximation (e.g., isolated lines, trajectories determined by the isotropic
potential, simple anisotropic models, etc.) in the RB expressions. In light of the discussion above, one may ask
why no one has found the problem for so many years? First, as shown above, the errors are very subtle.
Second, the RB formulas are still valid as good approximations, especially for weak interactions. As a result,
these formulas have been successfully used for many molecular pairs and the results obtained were in fair
agreement with experimental data. It is this success that led researchers to accept the correctness of the RB
formulas and to search in other directions in order to make further improvements.

2. Modification of the RB formalism

We now present a correct way for applying the cumulant expansions within the RB formalism. Instead of
choices used previously, one can choose an average of Ŝ over the internal degrees of the bath molecule as the
average used in the cumulant expansion,

hŜi ¼ Trinternal IbŜrb
n o

¼
X
2;20

hhj20i20 Ŝ
��� ���j2i2iirbð2Þ, (9)

where we have inserted Ib, a unit vector in the line space of the bath molecule, to emphasize that the trace is
carried out for the Liouville operator Ŝ. It is worth mentioning here that the average of the Liouville operator
Ŝ over the bath molecular internal degrees is carried out by summations not only over 2, but also over 20.
Except for the weighting factor rb in the summation over 2, averages over 2 and 20 are treated on an equal
footing. This differs from an average of a Hilbert operator in which the summation is weighted by rb over 2
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alone. It is easy to show that the normalization condition /1S ¼ 1 is satisfied. In addition, contrary to the
previous case, after making the average the remaining hŜi is no longer an operator acting on the states of the
bath molecule. Although it is still an operator in the line space of the absorber, according to our assumption it
is diagonal. As a result, one is able to apply the cumulant expansion and derive an ‘‘exact’’ expression for hŜi

hŜi ¼ e�ihS1ij2
�hS2ij2 , (10)

where the simple notation hAij2 is defined as a weighted average of A over the angular momentum quantum
number j2 of the bath molecule

hAij2 ¼
X

j2

ð2j2 þ 1Þ e�Eðj2Þ=kT Aðj2Þ=Qb (11)

and S1 and S2 to be averaged over j2 are exactly the same as those appearing in the RB formulas. Except for
this modification, the RB formalism, including the classical treatment of the translation motion that is carried
out by averaging over the velocity v and the impact parameter b indicated by /?Sv,b later, remains
unaffected. As a result, the only difference in the expressions for /m(0)Sbath is to replace hfhexpð�iS1 �

S2Þij2giv;b by hfexpð�ihS1ij2 � hS2ij2 Þgiv;b. Then, one can easily write down new formulas for the half-widths
and shifts directly from those provided by Robert et al. For the half-widths, the RB formula [8] and the new
one are given by

gRB ¼
nb

2pc

Z þ1
0

vf ðvÞdv

Z þ1
0

2pbdb 1� cosðS1 þ ImðS2ÞÞ e
�ReðS2Þ

� �
j2

(12)

and

gnew ¼
nb

2pc

Z þ1
0

vf ðvÞdv

Z þ1
0

2pbdb 1� cosðhS1ij2 þ ImðhS2ij2 ÞÞ e
�ReðhS2ij2

Þ
h i

, (13)

respectively, where f(v) is the Maxwell–Boltzmann distribution function. Meanwhile, for the shifts, the RB
formula [8] and the new one are given by

dRB ¼
nb

2pc

Z þ1
0

vf ðvÞdv

Z þ1
0

2pbdb sinðS1 þ ImðS2ÞÞ e
�ReðS2Þ

� �
j2

(14)

and

dnew ¼
nb

2pc

Z þ1
0

vf ðvÞdv

Z þ1
0

2pb db sinðhS1ij2 þ ImðhS2ij2 ÞÞ e
�ReðhS2ij2

Þ. (15)

In contrast with the RB formulas Eqs. (12) and (14) where the summation over j2 is outside of the cumulant
expansion and the other summation over j02 is inside, in the new Eqs. (13) and (15), both the summations over
j2 and j02 are inside and are treated on an equal footing. The new treatment is consistent with how one should
treat the average of a Liouville operator over the internal degrees of the bath molecule mentioned above,
and thus this treatment is more physically realistic. Finally, we would like to emphasize that these different
orders of averaging over bath degrees of freedom are not arbitrary. It is the subtle error in applying the
cumulant expansion in the RB formalism and the proper way to do this in the present study that leads to the
differences.

3. Numerical comparisons

We have done numerical calculations to compare the differences between the two formulations for several
molecular pairs of interest. Our purpose is to show effects resulting from the derivation error in the RB
formalism. For illustration purposes, we use a simple anisotropic potential model that consists of the
dipole–dipole, dipole–quadrupole, quadrupole–dipole, and quadrupole–quadrupole interactions. With respect
to the isotropic potential, we use a Lennard–Jones model with vibrational dependence described by the two
parameters a01 and y [19]. The translation motion is assumed to follow a parabolic trajectory [1]. As shown in
Figs. 1 and 2, for the half-widths and shifts, respectively, for the fundamental band of HF perturbed by N2, the
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values obtained from these two formulas differ slightly; the shifts differ more than the widths. For
comparison, we also show the experimental values [20]. This behavior is expected because the dipole moment
of N2 is zero and the interaction between HF and N2 is relatively weak.
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Fig. 3. The same as Fig. 1 except for HF broadened by HF. Experimental values at 295K by Pine and Fried [21] are presented by +.

Fig. 4. The same as Fig. 2 except for HF broadened by HF. Experimental values at 295K by Pine and Fried [21] are presented by +.
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We next consider a pair of HF–HF molecules whose interaction is very much stronger than that for HF–N2.

We see from Fig. 3 that, in general, values of the half-width obtained from the new expression (Eq. (13)) are
larger than those found from Eq. (12). On the other hand, one can see from Fig. 4 that in comparison with the
shifts based on the RB theory, the new calculated values change dramatically. The experimental data [21] are
shown for comparison. Additional comparisons for the magnitudes of the differences in widths and shifts
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between the RB formalism and the modified RB formalism for a number of vibrational bands of H2O, O3 and
CH4, are given in Antony et al. [22].

In summary, we have shown that there is an error in the RB formalism that occurred when these authors
applied the cumulant expansion in their derivation. As a result, the current RB formulas implicitly contain
other approximations, which could affect the theoretical predictions based on approximations adopted
intentionally. We have shown how to fix this problem within the RB framework, and provided expressions for
the calculation of half-width and shift without introducing any extra approximations. Numerical tests show
that the invalid assumption nature of the current RB formulas could distort the theoretical predictions
significantly, especially for cases where interactions between the absorber and bath molecules are strong. This
implies that results obtained through improvements of the RB formalism made by many researchers could
also be affected. In order to make further refinements of the theory, one has to use comparisons between the
undistorted predictions and experimental measurements as a guide.
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